Accès aux contributions > Par Session
|
Unifying large-scale spectroscopy, astrometry, and photometry with Convolutional Neural-Networks. Guillaume Guiglion sciencesconf.org:ml-iap2021:362163
|
Bringing Machine Learning to the Analysis of IFU Datacubes Carter Rhea sciencesconf.org:ml-iap2021:366457
|
Bayes vs. machine learning in large-scale survey demographics with eROSITA Johannes Buchner sciencesconf.org:ml-iap2021:367804
|
The miniJPAS survey: emission lines properties and SFR in theAEGIS field for galaxies withz<0.35 Ginés Martínez Solaeche sciencesconf.org:ml-iap2021:367849
|
Applying neural networks for the chemical analysis of star forming regions. Vital Fernández sciencesconf.org:ml-iap2021:367861
|
On the potential of machine learning in the classification of ultracool dwarfs with Euclid Eduardo Martin sciencesconf.org:ml-iap2021:367912
|
A Deep Learning Neural Network for Voigt Profile Fitting Quasar Absorption Lines Bryson Stemock, Christopher Churchill, Caitlin Doughty, Rogelio Ochoa, Sultan Hassan sciencesconf.org:ml-iap2021:367958
|
STag: Supernova Tagging and Classification William Davison, David Parkinson, Brad E. Tucker sciencesconf.org:ml-iap2021:367977
|
What drives the scatter in the BPT diagrams? A Machine Learning based analysis Mirko Curti sciencesconf.org:ml-iap2021:367995
|
AstronomicAL: an interactive dashboard for visualisation, integration and classification of data with Active Learning Grant Stevens, Sotiria Fotopoulou, Malcolm Bremer, Oliver Ray sciencesconf.org:ml-iap2021:368106
|
‘Deep' vs. 'Shallow' Learning in Cosmological Surveys Ofer Lahav sciencesconf.org:ml-iap2021:368114
|
A deep transfer learning approach to photospheric parameters of CARMENES target stars Antonio Bello-Garcia, Ordieres-Mere Joaquín, Vera Maria Passegger, Jose Antonio Caballero, Andreas Schweitzer, Ana Gonzalez-Marcos sciencesconf.org:ml-iap2021:368131
|
Machine learning: lessons learnt with the QUBRICS survey Francesco Guarneri, Giorgio Calderone, Stefano Cristiani, Andrea Grazian, Konstantina Boutsia, Guido Cupani, Fabio Fontanot, Valentina D'Odorico sciencesconf.org:ml-iap2021:368260
|
Predicting Physical Properties of Lyman Alpha Forest with Deep Learning Ting-Yun Cheng, Ryan Cooke sciencesconf.org:ml-iap2021:368298
|
Mapping the stellar photometric metallicity of the Magellanic Clouds with machine learning Amy Miller, Guillaume Guiglion, Maria-Rosa L. Cioni, David Nidever, Richard de Grijs sciencesconf.org:ml-iap2021:368318
|
Bridging the gap between synthetic and real data through unsupervised domain adaptation Spencer Bialek, Sébastien Fabbro, Kim Venn, Yuan-Sen Ting, Guillaume Payeur, Teaghan O'Briain sciencesconf.org:ml-iap2021:368332
|
Neural spectrum encoding Peter Melchior sciencesconf.org:ml-iap2021:368337
|
|