Gaussian Process Regression: An Application to Radio Cosmology Paula Soares sciencesconf.org:ml-iap2021:365641
|
Machine learning within the THREEHUNDERD simulation project Daniel de Andres, Gustavo Yepes, Weiguang Cui, Marco De Petris, Florian Ruppin sciencesconf.org:ml-iap2021:365878
|
Considerations for optimizing photometric classification of supernovae from the Rubin Observatory Catarina S. Alves, Hiranya V. Peiris, Michelle Lochner, Jason D. McEwen, Tarek Allam Jr, Rahul Biswas sciencesconf.org:ml-iap2021:366394
|
Inferring the assembly and merger histories of galaxies with the IllustrisTNG simulations and machine learning Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf Klessen sciencesconf.org:ml-iap2021:367649
|
Search for galaxy-scale strong lenses in DES and CFIS Frédéric Courbin sciencesconf.org:ml-iap2021:367683
|
Fast and realistic large-scale structure from machine-learning-augmented random field simulations Davide Piras, Benjamin Joachimi, Francisco Villaescusa-Navarro sciencesconf.org:ml-iap2021:367866
|
Forecasting the power of Higher Order Weak Lensing Statistics with automatically differentiable simulations Denise lanzieri, François Lanusse, Chirag Modi sciencesconf.org:ml-iap2021:367889
|
Machine Learning Calibration of Cosmic Shear Redshift Distributions Angus Wright sciencesconf.org:ml-iap2021:367923
|
Investigations for LSST with Machine Learning: Strong Lens Mass Modeling and Photometric Redshift estimation Stefan Schuldt, Sherry Suyu, Raoul Canameras, Yiping Shu, Stefan Taubenberger sciencesconf.org:ml-iap2021:367956
|
Single frequency CMB polarized foreground marginalization with a single training image Niall Jeffrey sciencesconf.org:ml-iap2021:367971
|
STag: Supernova Tagging and Classification William Davison, David Parkinson, Brad E. Tucker sciencesconf.org:ml-iap2021:367977
|
hyphy: Mapping Dark Matter to Hydrodynamics with Posterior Inference Benjamin A Horowitz sciencesconf.org:ml-iap2021:368033
|
Probabilistic Mapping of Dark Matter by Neural Score Matching Benjamin Remy, François Lanusse, Niall Jeffrey, Jia Liu, Jean-Luc Starck, Ken Osato sciencesconf.org:ml-iap2021:368048
|
Dark Substructure Sensitivity in the Euclid Survey with Machine Learning Conor O'Riordan sciencesconf.org:ml-iap2021:368064
|
Use data not models -- Lensing of '69 as an example for data-driven inference Jenny Wagner sciencesconf.org:ml-iap2021:368087
|
Accelerating the modeling of HI on cosmological scales via Deep Learning Robert Feldmann, Mauro Bernardini, Joachim Stadel, Lucio Mayer, James Bullock, Daniel Anglés-Alcázar, Michael Boylan-Kolchin sciencesconf.org:ml-iap2021:368090
|
The Dark Quest project for cosmological emulation Takahiro Nishimichi, Masahiro Takada, Ryuichi Takahashi, Ken Osato, Masato Shirasaki, Taira Oogi, Hironao Miyatake, Masamune Oguri, Ryoma Murata, Yosuke Kobayashi, Naoki Yoshida, Sunao Sugiyama, Satoshi Tanaka sciencesconf.org:ml-iap2021:368095
|
Parameter Estimation with Physics Informed Neural Networks Alex Lague, J. Richard Bond, Renee Hlozek sciencesconf.org:ml-iap2021:368111
|
‘Deep' vs. 'Shallow' Learning in Cosmological Surveys Ofer Lahav sciencesconf.org:ml-iap2021:368114
|
The scattering transform in cosmology, or, a CNN without Training Sihao Cheng, Brice Ménard, Yuan-Sen Ting, Joan Bruna sciencesconf.org:ml-iap2021:368116
|
Using convolutional neural networks to identify strong lenses in Euclid and J-PAS Alberto Manjon García, Jose María Diego Rodriguez, Diego Herranz Muñoz, Helena Domínguez Sánchez, Jesús Vega Ferrero sciencesconf.org:ml-iap2021:368120
|
Artificial intelligence for accurate weak lensing analyses Daniel Gruen sciencesconf.org:ml-iap2021:368185
|
Cosmological constraints from galaxy-galaxy lensing and galaxy clustering with HSC-Y1 and BOSS data: the first application of emulator-based halo model to cosmology analysis Hironao Miyatake, Sunao Sugiyama, Masahiro Takada, Takahiro Nishimichi, Yosuke Kobayashi, Surhud More, Naoki Yoshida sciencesconf.org:ml-iap2021:368192
|
A wavelet based generative model for high resolution cosmological maps Jed Homer, Daniel Gruen, Oliver Friedrich sciencesconf.org:ml-iap2021:368214
|
Learning from 3D tomographic 21cm maps Caroline Heneka sciencesconf.org:ml-iap2021:368244
|
Photometric redshifts for cosmology: improving accuracy and uncertainty estimates using Bayesian Neural Networks Evan Jones, Tuan Do, Bernie Boscoe, Jack Singal, Yujie Wan, Zooey Nguyen sciencesconf.org:ml-iap2021:368269
|
Superresolving Herschel imaging: a proof of concept using Deep Neural Networks Lynge Lauritsen, Hugh Dickinson, Jane Bromley, Stephen Serjeant, Chen-Fatt Lim, Zhen-Kai Gao, Wei-Hao Wang sciencesconf.org:ml-iap2021:368272
|
Machine learning for experimental design: stress-testing redshift uncertainty quantification and propagation with Redshift Assessment Infrastructure Layers (RAIL) Alex Malz sciencesconf.org:ml-iap2021:368273
|
Photometric redshift calibration with simulated annealing and self-organising maps Benjamin Stölzner sciencesconf.org:ml-iap2021:368290
|
Predicting Physical Properties of Lyman Alpha Forest with Deep Learning Ting-Yun Cheng, Ryan Cooke sciencesconf.org:ml-iap2021:368298
|
Detection of the Damped Lyman-alpha systems in quasar spectra with machine learning algorithms ting tan, Yuankang Liu, Christophe Balland sciencesconf.org:ml-iap2021:368304
|
A new catalog of 343,000 quasars with their photometric redshifts derived with machine learning from the Kilo Degree Survey Szymon Nakoneczny, Maciej Bilicki, Agnieszka Pollo, Marika Asgari, Andrej Dvornik, Thomas Erben, Benjamin Giblin, Catherine Heymans, Hendrik Hildebrandt, Arun Kannawadi, Koen Kuijken, Nicola Napolitano, Edwin Valentijn sciencesconf.org:ml-iap2021:368306
|
Galaxy Cluster Mass Estimation Using Deep Learning Matthew Ho, Michelle Ntampaka, Markus Michael Rau, Arya Farahi, Hy Trac, Barnabas Poczos sciencesconf.org:ml-iap2021:368314
|
Bayesian Inference Acceleration: a Deep Learning Approach Marco Bonici sciencesconf.org:ml-iap2021:368320
|
Machine learning-infused cluster cosmology Stéphane Ilic, Simona Mei sciencesconf.org:ml-iap2021:368326
|
Applying Deep Neural Network to dark matter halo catalogues to constrain the dark energy equation-of-state parameters Farida Farsian, Lauro Moscardini, Federico Marulli, Carlo Giocoli sciencesconf.org:ml-iap2021:368405
|
Emulating the void density profile and the void-size function Giorgia Pollina sciencesconf.org:ml-iap2021:368424
|
CosmoPower: deep learning emulation of cosmological power spectra for accelerated Bayesian inference from next-generation surveys Alessio Spurio Mancini sciencesconf.org:ml-iap2021:368826
|
LyAl-Net: A high-efficiency Lyman-α forest simulation with neural network Chotipan Boonkongkird sciencesconf.org:ml-iap2021:369276
|
Review on cosmology and machine learning Benjamin Wandelt sciencesconf.org:ml-iap2021:380968
|
Review on machine learning and cosmological simulations Francisco Villaescusa-Navarro sciencesconf.org:ml-iap2021:383245
|